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a b s t r a c t

The objective of this reviewwas to identify, address and rank knowledge gaps in our understanding of five
major soil C and N interactions across a range of scales e from molecular to global. The studied five soil C
and N interactions are: i) N controls on the soil emissions of greenhouse gases, ii) plant utilisation of
organic N, iii) impact of rhizosphere priming on C and N cycling, iv) impact of black N on the stabilisation of
soil organic matter (SOM) and v) representation of fractions of SOM in simulation models. We ranked the
identified knowledge gaps according to the importance we attached to them for functional descriptions of
soileclimate interactions at the global scale, for instance in general circulation models (GCMs). Both the
direct and indirect influences on soileclimate interactions were included.

We found that the level of understanding declined as the scale increased from molecular to global for
four of the five topics. By contrast, the knowledge level for SOM simulationmodels appeared to be highest
when considered at the ecosystem scale. The largest discrepancy between knowledge level and impor-
tance was found at the global modelling scale. We concluded that a reliable quantification of greenhouse
gas emissions at the ecosystem scale is of utmost importance for improving soileclimate representation in
GCMs. We see as key questions the identification of the role of different N species for the temperature
sensitivity of SOM decomposition rates and its consequences for plant available N.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A large percentage of the Earth’s active carbon (C) is found in
soil organic matter (SOM) and its cycling rate is strongly linked to
nitrogen (N)availability. Itwas recognisedalready in the1990s, thatN
availability is themain governing factor controlling soil C response to

climatechange inN-limitedecosystems(Diazet al.,1993; Inesonetal.,
1996). This understandinghas beenemphasised through anumber of
research programmes studying interactions between the C and N
balances in ecosystems, using both thepresent climate and simulated
climate change conditions e.g. the Climex (Dise and Jenkins, 1995),
Nitrex (Wright et al., 1995), Canif (Schulze, 2000) and Nitro-Europe
(NitroEurope, 2006) programmes. Appreciation of the importance of
soil C and N interactions for predicting the impacts of climate change
has certainly increased, but we still lack a full understanding and
quantification of the drivers (Hu et al., 2001; Hyvönen et al., 2007).

To date, the interactions between soil C and N are not adequately
represented in general circulation models (GCMs) despite the
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importance attached to these interactions by the majority of soil
and ecosystem scientists (Thornton et al., 2007). In 2000, some first
attempts were made to incorporate soil feedback responses into
GCMs (Cox et al., 2000) and these models are now considered
too simplistic (Davidson and Janssens, 2006). It is possible that the
influence of soil C and N interactions may to a certain extent be
implicitly captured in theproduction and respirationpredictions from
GCMs for the recent past and present situations, assuming green-
house gas fluxes are accurately quantified. However, this certainly
does not mean that current representations are sufficient to accu-
rately predict future greenhouse gas fluxes, together with their
impact on the climate system. Future scenarios generated fromGCMs
may have significant biases if soil C and N interactions are being
modified due to global change. Moreover, there is a growing body of
literature suggesting that these interactions will change in response
to a variety of factors, such as increased carbon dioxide (CO2) fertil-
isation, land use and management as well as changing precipitation
and temperature regimes. The challenge is to incorporate realistic
aspects of the interactions between ecosystem/biome N status and
trace gas emissions in coupled GCMs. Although the majority of basic
knowledge is present in the literature, uncertainties still remain.

Bouma (2005) distinguished major kinds of knowledge gaps
hampering progress in research: i) ‘We knowwhat we don’t know’,
ii) ‘Wedon’t knowwhat we know’, and iii) ‘Wedon’t knowwhat we
don’t know yet’ (Bouma, 2005; pp. 73). The first kind is the most
tractable one, and here we attempt to identify some of the key
scientific issues falling under this heading since awareness of
such knowledge gaps is a convenient starting point for progress in
scientific understanding. The second type of knowledge gap is less
tractable and may cause some degree of frustration. For example,
there is still no standard way of measuring such a seemingly simple
process as litter decomposition; even the results of the long-
standing mesh bags techniques are difficult to interpret. So, for
something even as seemingly straightforward as monitoring litter
decomposition, we actually ‘don’t know what we know’. The
third type of knowledge gap is the most problematic one. Science
abounds with examples of falsely inherited wisdom or total igno-
rance of extremely important processes. For example, until the
mid-1990s, the uptake of organic N by plants was assumed to be
negligible. Consequently research focussed entirely on inorganic N
and therefore, descriptions of N cycling in models often lack this
entire pathway (Schimel and Bennett, 2004). We have identified
five major knowledge gaps relating to soil C and N interactions
relevant for soileclimate interactions.

i) To what extent does N control the soil emissions of the green-
house gases CO2, CH4 and N2O?

ii) To what extent do plants utilise organic N?
iii) To what extent does rhizosphere priming affect C and N cycling?
iv) How does black N affect SOM stability?
v) How could different fractions of SOM be adequately represented

in models at various scales?

Several of these questions are hybrids of the first and second
types of knowledge gaps. We know that processes, such as priming
by roots, are potentially important; however, we cannot yet advise
the GCM modellers whether these processes need to be repre-
sented in global models or how this could be achieved. We also
know that N controls greenhouse gas emissions, but still, we cannot
fully assess how strong these interactions are, and although there
are studies quantifying these effects locally, it is difficult to gener-
alise to a global scale.

The objective of this study was to identify, address and rank the
knowledge gaps in the five topics on soil C and N interactions at
molecular, organism, ecosystem and global scale. The ecosystem

scale is here defined as field and forest stand scale. We ranked the
knowledge gaps identified according to the importancewe attached
to them for functional description of soileclimate interactions at
the global scale, for instance in GCMs. Both direct influences on
soileclimate interactions and indirect influences through plant N
availability were considered and how these influences might
change with climate change.

An attempt was made to identify the governing factors at
specific scales, i.e. what do we know, or what do we not know. We
also discuss possible effects of climate change on the controlling
factors, and what needs to be considered when moving between
scales. Upscaling is an important and recurring issue throughout
these discussions and, wherever possible, estimation has been
made of where the uncertainties are, both regarding structural
uncertainty due to lack of understanding of processes and uncer-
tainty due to data quality and aggregation. For instance, what are
the possible consequences of upscaling short-term experiments at
microorganism scale to long-term global trends or those of aggre-
gated data derived at different scales?

2. Knowledge gaps in five topics of soil C and N interactions

2.1. To what extent does N control the soil emissions
of the greenhouse gases CO2, CH4 and N2O?

There is a long-standing awareness of the importance of soil
management as a central element in the sustainability or collapse of
human societies at local and regional scales (Russell,1973; Diamond,
2005). However, the full realisation of the importance of soils in
maintaining atmospheric concentrations of greenhouse gases at the
global scale first entered mainstream thinking as the 21st Century
approached. The assessments of the Intergovernmental Panel on
Climate Change (IPCC, 1995) and the incorporation of soil feedbacks
into coupled GCMs (Cox et al., 2000) clearly demonstrated the
developing concepts of the major role played by soils in climate
feedback processes. Indeed, it is from soils that some of the greatest
climate destabilising feedbacks can be expected (Heimann and
Reichstein, 2008). The increases in atmospheric concentrations of
carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are
of major importance when considering future climates. All three of
these gases have a substantial part of their cycling, either production,
consumption or storage, associated with soils and here we consider
relevant knowledge across a number of scales and how N interacts
with these transfers.

At the molecular scale there is considerable fundamental knowl-
edge, gained largely from laboratory studies investigating the under-
lying reactions associated with the production and consumption of
these three important trace gases. Undoubtedly, new pathways and
reactionswill be discovered.Of the three greenhouse gasesmentioned
above, CO2 is one of the most frequently measured and more fully
understood gas emitted from soils. Biological oxidation of energy-rich
molecules in soils results in the uptake of oxygen, with a concomitant
release of CO2, a process termed soil respiration (Russell, 1905). The
major components of this net flux are normally the combined respi-
ratory activities of soil micro-organisms, such as bacteria and fungi, in
the bulk soil (heterotrophic) and those from plant roots (autotrophic)
(see Gloser and Tesarova,1978; Högberg and Read, 2006; Heinemeyer
et al., 2007). The contributions from heterotrophs and autotrophs to
soil respiration are probably comparable inmagnitude (Högberg et al.,
2002). Behind themeasured net CO2fluxes are numerous processes of
CO2 production and consumption, both biotic and abiotic.

Identifying, understanding and quantifying these processes is
crucial, as we seek to find new ways to sequester increasing
amounts of C from the atmosphere. The underlying biochemistry
behind the biotic production of CO2 in soils is highly conserved, and

A.I. Gärdenäs et al. / Soil Biology & Biochemistry 43 (2011) 702e717 703
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our understanding at the molecular scale is excellent. However,
CO2 production from abiotic sources in soils cannot be ignored and
more sophisticated analytical techniques need to be applied to
make the necessary distinctions (Biasi et al., 2008). Similarly, at the
molecular level, we understand the mechanisms through which
autotrophs can assimilate CO2, but there are probably additional
anapleurotic pathways active, potentially modified by starvation,
the availability of oxygen and N, as demonstrated for yeast in
laboratory studies (Wu et al., 2004) and for forest ecosystems in situ
(Fleischer, 2003). The abiotic uptake of CO2 by soils, resulting from
reactions with, for instance Ca2þ and Mg2þ minerals to form
carbonates, is proposed as a benign form of CO2 sequestration
(Parsons et al., 2004).

In order to manage C in soils, we need to know more about the
quantities and turnover timesof keyorganic soil constituents and their
major controlling factors. The role of cutin in controlling responses
of SOM to changes in temperature has recently been highlighted
(Feng et al., 2008), and the sensitivity to temperature change of other
components in soils is heavily debated (Fang et al., 2005; Knorr et al.,
2005; Kirschbaum, 2006; Davidson and Janssens, 2006; Hartley and
Ineson, 2008; Hartley et al., 2008; Bradford et al., 2008a; Gershenson
et al., 2009). We do know that the availability of N has a profound
effect on decomposition rates (Melillo et al., 1982).

Hypotheses addressing the question of why contrasting effects
of N additions on decomposition of high and low quality litters
had been observed, were first clearly formulated by Fog (1988). A
reduction in the total activity of decomposers occurs in poor quality
substrates, such as wood, when more readily available N is added;
thus, the balance of chemically recalcitrant and available C and N
should dictate whether CO2 release from a substrate will increase
or decrease on further N addition (Fog, 1988). Later research has
shown that N enrichment can reduce microbial biomass and/or the
activity of various enzymes, resulting in declines in CO2 emissions
(Treseder, 2008), and such declines do not appear to be closely
coupled to changes in SOM chemistry, which was one of Fog’s
original hypotheses (Sjöberg et al., 2003, 2004).

Methane is another key greenhouse gas, the production of which
is strongly influenced by soil C and N interactions. The molecular
aspects of CH4 production and consumption bymicro-organisms are
well studied and there is a comprehensive literature derived from
research involving pure cultures of archaea and bacteria, ruminant
animals, anaerobic digesters, entire wetlands and upland soils. CH4
production occurs under anaerobic conditions and in systems with
a relatively low redox potential, altering the competition for the
major methanogenic substrates such as acetate (CH3COO�), formate
(HCOO�), H2 and CO2 (Fenchel et al., 1998). The role of available N in
affecting rates ofmethanogenesis andmethanotrophy (the oxidation
of CH4) is not straightforward, we know that at the molecular level,
nitrate (NO3

�) can act as an alternative electron acceptor (forming
N2O) and, consequently, exerting an obvious impact on methane
production. According to a laboratory experiment reported by Yu
and Patrick (2004), it should be possible to keep water-saturated
paddy-rice soil within a certain redox potential window tominimise
both CH4 and N2O emissions. For simplicity, all methanogens are
normally assumed to use the same limited range of reactions and
mechanisms for energy conservation, but this can be questioned.
Thauer et al. (2008) showed that the presence of cytochromes
appears to dictatewhether thefirst and last steps inmethanogenesis
are coupled chemiosmotically or through cytoplasmic enzyme
complexes. Similarly, the oxidation of CH4 is not a single simple
process, and the range of recognised reactions, and organisms
involved, continues to grow (Raghoebarsing et al., 2006; Maxfield
et al., 2006). Although work with single organisms has been crucial
in revealing the nature of the fundamental reactions, this informa-
tion only goes some way to revealing what is possible in nature.

The interactions between N supply and CH4 oxidation were
thoroughly discussed in an early review by Hanson and Hanson
(1996). Numerous studies have shown a sensitivity of CH4 oxida-
tion to disturbances in the N cycle. Steudler et al. (1989) demon-
strated that nitrogenous fertilisers inhibit CH4 oxidation in forest
soils. However, there are a series of conflicting studies. For example
both the growth and activity of methanotrophs in the root zone of
rice are stimulated by the addition of NH4

þ fertilizer (Bodelier et al.,
2000). Bykova et al. (2007) found that pre-incubation with NH4

þ

completely inhibited CH4 oxidation in an arable soil and similar
impacts have been found for NO3

� additions to forest soils (Wang
and Ineson, 2003; Reay and Nedwell, 2004). Noll et al. (2008)
demonstrated, with stable isotope probing (Radajewski et al.,
2000), that CH4-oxidizing bacteria in soil are not only controlled
by their main substrates, CH4 and O2, but also by N availability.
Thus, availability of N is one of the major factors limiting CH4
consumption in various types of soils.

Bodelier and Laanbroek (2004) attempted to resolve the con-
flicting results for N impacts on CH4 emission. They argued thatmuch
of the confusion can be removed if a ‘bottom-up’ approach is used for
comparing results from different studies and the role of mineral N
availability for the micro-organisms involved is ignored. The authors
question the paradigm that N fertilisers inhibit CH4 oxidation. The
priority is clearly to obtain solid empiricalfluxdata fromawide range
of ecosystems, climate zones, and biome types and relate these fluxes
to associated changes in microbial populations and activities;
a principal challenge thereby is to resolve scale differences that
traditionally keep the work of microbial and ecosystem scientists
apart. Demonstrable, only partial understanding is gained when
treating CH4 fluxes as a ‘black box’, and ignoring the identity of the
organisms involved. For example, CH4 oxidation rates in one partic-
ular ricefield soilwere increased seven-fold byN fertilisation, but the
fertilisation only activated a small subset of the CH4 oxidizing pop-
ulation present in the soil (Noll et al., 2008).

Of all the greenhouse gases, N2O is the onemost directly related to
anthropogenic management of soils, with the main human-related
sources of N2O being agricultural land (Davidson, 2009). Moreover,
N2O is emitted from a variety of unfertilised soils, particularly forest
soils in the humid tropics. Basic understanding of the biochemical
pathways resulting in the production of N2O is good and the ‘leaky
pipe’ conceptual model proposed by Firestone and Davidson (1989)
has stood the test of time and is still a useful starting point. N2O
is produced via two main routes and by two functional groups of
micro-organisms. The anaerobic denitrifier pathway, mainly fuelled
by available C sources, requires besides anaerobic conditions NO3

� as
a substrate. In contrast, the nitrifier route, in which N2O is released
as an intermediate product during nitrification, is an autotrophic
process requiring aerobic conditions and NH4

þ
as a substrate.

However, the chemodenitrification contributions to N2O fluxes are
still poorly quantified, these are the chemical reactions of NO2

� with
organic matter at low pH, resulting in the production of NO, HNO3
and H2O and the formation of N2, N2O and CH3ONO (Van Cleemput
and Samater, 1996). Chemodenitrification fluxes may be important
in acid soils under certain specific conditions, such as after the
addition of urine (Williams et al., 1999).

Heavy utilisation of N fertilisers in crop production, or the
application of N-rich wastes to agricultural soils typically results in
N2O emissions through a number of identified biochemical routes.
Crude representations of N2O emissions, such as multiplying an
emission factor by the amount of N applied in agricultural systems,
alongwith a background emission rate from other land use systems
may provide some realism. However, the accuracy of these
approaches may diminish if the underlying physical and chemical
conditions in soils are modified by climate change, including soil C
and N interactions. This could well introduce bias into the
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prediction of N2O emissions by GCMs if not more process-based
representations are developed.

2.2. To what extent do plant utilise organic N?

Plant uptake of organic N compounds has been studied since the
early 20th century (Hutchinson andMiller, 1911; Brigham,1917), but
it has only recently gained extensive attention. Over decades,
the general concept of organic N utilisation being limited to plants
forming ecto- and ericoid mycorrhiza, plants growing in cold
climates or in low pH soils, still prevails despite several early studies
showing that non-mycorrhizal plants utilise organic N. Organic N
utilisation is a widespread capacity among plants and all plant
species tested have been found to take up organic N, suggesting this
to be a ubiquitous capacity of plants. Plant utilisation of organic N is
demonstrated in arctic (Kielland, 1994, 1997; Schimel and Chapin,
1996; Henry and Jefferies, 2002; Nordin et al., 2004), boreal
(Näsholm et al., 1998; Nordin et al., 2001; Persson and Näsholm,
2001a; McFarland et al., 2002; Bennett and Prescott, 2004),
temperate (Falkengren-Grerup et al., 2000; Finzi and Berthrong,
2005), Mediterranean (Hawkins et al., 2005) and alpine ecosys-
tems (Raab et al., 1996,1999; Lipson et al., 1999;Miller and Bowman,
2002). Similarly, many agricultural species readily take up organic N
(Yamagata and Ae, 1996; Näsholm et al., 2000, 2001; Okamoto et al.,
2003). Thus, at awhole-plant scale, plants are able to take up at least
some organic N compounds such as amino acids, amino sugars and
small peptides (Näsholm et al., 2009).

We also have some knowledge of the molecular mechanisms
enabling the process, and this knowledge is rapidly growing. In the
model plant Arabidopsis thaliana, three transporters mediate root
uptake of amino acids: the Lysine Histidine Transporter 1 (Hirner
et al., 2006; Svennerstam et al., 2007), Amino Acid Permease 5
(Svennerstam et al., 2008) and Amino Acid Permease 1 (Lee et al.,
2007). Lysine Histidine Transporter 1 and Amino Acid Permease 5
are probably the major transporters active in the concentration
range of interest here, while Amino Acid Permease 1 may mediate
uptake only at high (mM) concentrations. However, at the stand
or ecosystem scale, there is little quantitative information on the
importance of organic N utilisation by plants. It seems that climate
and hydrology have a large influence on plant utilisation of organic
and inorganic N. Organic N is more important in cool and wet
environments than in hot and dry environments (Schmidt and
Stewart, 1999; Warren, 2006).

The use of dual (13C, 15N) labelled amino acids has helped us to
characterise uptake of various compounds in the field and to quantify
the extent of short-term uptake of intact and mineralised amino
acids. The detection of both 13C and 15N in plant tissues indicates
uptake of intact amino acids. Uptake of 13C and 15N tracers can also
occur from decomposition products of added dual-labelled amino
acids, such as 13C labelled organic acids or 13HCO3

� and 15NH4
þ.

Plant uptake of intact amino acids can be verified with GCeMS (gas
chromatography-mass spectrometry) analysis of tissue extracts of
plants exposed to dual-labelled amino acids. Since the methodology
for this verification was developed (Persson and Näsholm, 2001b),
it has been applied in various field and pot experiments studies, and
has confirmed that plants can acquire intact amino acids (Öhlund and
Näsholm, 2001; Näsholm et al., 2001; Persson et al., 2003; Nordin
et al., 2004). One short-coming of the dual labelling approach is
that no information on the quantitative importance of organic N for
plants is provided because plants gradually lose 13C during the
metabolism of absorbed organic N (Näsholm et al., 2009). The factors
governing organic N utilisation by plants include production rates,
fluxes and concentrations of organic N compounds in the soil, uptake
capacities of plant roots and mycorrhizas, and competition between
plants and non-symbiotic micro-organisms. Although the capacity

for organic N uptake and utilisation may be ubiquitous for plants, it
cannot be excluded that there are inter- and intra-species differences
in the extent to which this capacity is developed and realised in the
field. The few studies addressing this question reached different
conclusions (McKane et al., 2002; Harrison et al., 2007, 2008).
Therefore, we cannot forecast the extent to which altered climatic
and edaphic conditions will alter plant organic N utilisation and how
such changes alter the competitive ability of different plant types.

Soil N availability shows a wide variability. Many agricultural
soils display concentrations of inorganic N in the mM range, but
with concentrations of individual organic N compounds in the low
mM range, suggesting plant N nutrition should be dominated by
inorganic N in these systems. At the other end of the scale, many
forest soils display low NO3

� concentrations, NH4
þ concentrations in

the range 10e100 mM, and concentrations of individual organic N
compounds in the range 1e10 mM (cf. Miller and Cramer, 2004).
However, free amino acids may constitute less than 0.5% of the total
soluble organic N pool, which is dominated by amino acids bound in
proteins and peptides (Andersson and Berggren, 2005). In many
soils of natural ecosystems, such as boreal forests, organic N
dominates over inorganic N in the soil solution (Näsholm et al.,
1998; Kielland et al., 2007; Kranabetter et al., 2007) and the turn-
over of organic N is rapid with half-lives of amino acids in the range
of a few hours (Jones et al., 2005; Kielland et al., 2007). A critical
choice is whether a relevant comparison between organic and
inorganic N should be based on concentrations of individual
compounds (e.g. NO3

� vs. glycine) or groups of compounds (e.g.
inorganic N vs. total amino acids). This choice is also critical when
interpreting results from labelling studies. In such studies, dilution
of added labelled compounds by pre-existing levels of unlabelled
compounds are calculated and used to compare uptake rates of
different compounds. Characterisation of the uptake mechanisms
indicates that amino acid acquisition by themodel plant Arabidopsis
is governedmainly by two different transporters; one combined for
acidic and neutral compounds, and one for basic compounds. If this
pattern is valid for other non-mycorrhizal plant species, it means
that from a plant-root perspective, all acidic and neutral species are
part of one pool, while all basic species are part of another pool.
Experimentalists and modellers should recognise and use this as
a basis for comparisons. It is well documented that relatively low
levels of NH4

þ may inhibit uptake of NO3
�. By contrast, interactions

between inorganic and organic N compounds in plant N uptake are
not well studied, but available data suggest that this interaction is
small and may possibly favour uptake of organic N (Thornton and
Robinson, 2005). This means that plants may not show “prefer-
ence” for inorganic N when it is available, but may acquire N from
organic and inorganic N simultaneously. Implicitly, the role of
organic N for plant N nutrition may be dynamic in time and space.

Rates of productionof simple (monomeric) organicN compounds
in soil are found to be important determinants of plant organic N
utilisation (Leadley et al., 1997; Schimel and Bennett, 2004).
The competition between plants and micro-organisms for these
substrates is usually suggested as a second major factor limiting the
role of organic N for plants. Studies allowing for a full accounting of
added 15N labelled compounds indicate that plants are inferior
competitors for both inorganic and organic N compared to micro-
organisms and in the short-term only acquire a small fraction of the
addedN (Harrison et al., 2007, 2008; Kaye andHart,1997). Still, plant
biomass and plant N are generally much higher than microbial
biomass and microbial N, implying that short-term competition
studies cannot accurately describe competition between these
groups of organisms (Kaye and Hart, 1997). One problemwith these
studies is that plant symbioticmicro-organisms cannot be separated
from the non-symbiotic ones, leading to underestimation of N
acquired by plants (Eviner and Chapin, 1997).
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Until now, no single experiment has been able to quantify to
which extent plants utilise organic N in a specific ecosystem. We
are thus left with speculations about the extent of organic N uti-
lisation, although its very existence is well demonstrated by labo-
ratory and field studies. A possible indicator of the importance of
organic N is its contribution to the N pool in the soil solution.
However, this approach is complicated by the slower diffusion rates
of organic N than NO3

� and by a lack of information on the extent to
which other compounds, besides free amino acids, are directly
accessible for plants. A large fraction of organic N in the soil solu-
tion consists of peptides and small proteins (Andersson and
Berggren, 2005). Other sources of dissolved organic N are amino
sugars, nucleotides, amides, and amines.

N has a pivotal role in regulating the global C cycle. An accurate
estimation of all forms of plant available N is therefore crucial for
the functioning of GCMs. There are several potential ramifications
of a significant contribution of organic N to plant N nutrition,
including the effects on growth, root-to-shoot ratio and soil pH.

2.3. To what extent does rhizosphere priming
affect C and N cycling?

A critical and poorly understood link between vegetation and soil
C andN cycling is how living roots alter or “prime” the decomposition
rate of SOM. SOM priming was first described by Löhnis (1926) as
the addition of fresh crop residues to soil, which accelerated the
decomposition of SOM. Priming of SOM by living roots due to rhizo-
deposits, such as carbohydrates (including sugars), organic acids
(including amino acids), hormones, vitamins, dead cells and other
substances released fromplant roots in small quantities is observed in
various plant communities (Bottner et al., 1999; Dijkstra and Cheng,
2007a). The mechanisms to explain the wide range of responses
reported are not yet established, despite that compelling hypotheses
to address rhizosphere priming have been proposed (Kuzyakov,
2002). Consequently, current ecosystem- and global-scale models of
terrestrial C cycling do not consider rhizosphere priming, even
though it can be significant. Living roots both negatively (from 50%
lower) and positively (up to 380% higher) affect existing soil C and N
mineralisation rates and SOM loss can be as much as the amount of
root C added to the soil (Cheng and Kuzyakov, 2005; Cheng, 2009).
Hypotheses of the cause of SOM priming by living roots have focused
on two interconnected areas: i) effects of root deposited C on
microbial activity (Fontaine et al., 2003; Hamer andMarschner, 2005;
Neill and Gignoux, 2006) and ii) N and/orwater competition between
plant roots and microbes (Liljeroth et al., 1994; Dijkstra and Cheng,
2007a). Questions related to the role of micro-organisms are
whether priming is the result of a more general enzymatic activity of
a broad microbial community or whether there are particular func-
tional groups that stimulate SOM mineralisation to obtain N and P
when supplied with C-rich, easily degradable substrates. The release
of energy-rich rhizodeposits from roots increases microbial activity
in general and enhances SOM decomposition rates (Kuzyakov
et al., 2000). Faster microbial biomass turnover explained the rhizo-
sphere-derived SOM priming under soybean and wheat (Cheng,
2009). This relationship between microbial turnover rate and
enhanced SOM priming in the rhizosphere is sensitive to substrate
utilisation efficiency, but not to microbial maintenance. However, we
lack more fundamental understanding about the importance of the
chemical composition of the substrate in relation to the recalcitrance
of the SOM being primed.

The reactions of specific functional groups of micro-organisms
to rhizodeposition have been studied (Fontaine and Barot, 2005).
Fontaine et al. (2003) suggested that SOM priming events arise
from the relative and competitive response of r-strategists and
K-strategists among heterotrophic soil micro-organisms. The

r-types are growing rapidly under conditions of high resource
availability and the K-types exhibit lower growth rates, but higher
substrate affinities. As micro-organisms are often energy limited in
soils, rhizodeposits from roots may activate r- and/or K-strategists
with labile, energy-rich root exudates (Jones et al., 2004). If
K-strategists were competitive for rhizodeposits, SOM degradation
would be enhanced e as these microbes are considered to produce
a wide assortment of oxidative and hydrolytic enzymes that can
degrade SOM (Fontaine and Barot, 2005). In contrast, a negative
priming effect would occur when r-strategists out-compete
K-strategists for exudates due to the suppression of enzyme
production. The presence of an active rhizosphere increased SOM
decomposition by 20% under oat and stimulated uptake of soil
organic C by Gram (þ) bacteria and actinobacteria, while Gram (�)
bacteria and fungi assimilated significantly less soil organic C than
in unplanted soils (Bird et al., 2011).

Competition for N andwater between plant roots andmicrobes is
the second hypotheses of the cause of SOMpriming. The relationship
between N availability and SOM priming has been observed in field
studies (Bradford et al., 2008b) and a greenhouse experiment under
oat and N fertilisation (Bird et al., 2011). If microbial activity is
stimulated by rhizodeposits, an altered competition for N between
plants and micro-organisms should occur in N-limited soils.
Accordingly, DeAngelis et al. (2008) found higher N-cycling enzy-
matic activity (chitinases, proteases) and amounts of dissolved N in
the rhizosphere of wild oat than in bulk soil without roots. This
greater N-cycling activity in the rhizospherewas accompanied by an
increase in bacterial density that may have been fuelled by rhizo-
deposits decreasing limitations on microbial growth and activity
(DeAngelis et al., 2008). By contrast, Cheng (2009) showed that
rhizosphere-primed C mineralisation was decoupled from net N
mineralisation, negating the often assumed proportionality between
soil C and N processes. Others have reported nitrification to be
negatively affected in the rhizosphere (Philippot et al., 2009 and
references therein) and to vary along the plant root due to rapid
uptake of NH4

þby the older parts of the root (Herman et al., 2006). For
example, gross nitrification rates in the soil near the root tip of Avena
barbata were the same as those in bulk soil, whereas rates were
lower in the soil near the older root sections. In addition to N, the
effect of soil P availability on rhizosphere-related SOM priming may
be significant and opposite to N (Bradford et al., 2008b). Plant uptake
of water from the rhizosphere reduces soil moisture, which may
limit microbial activity and the degree of SOM priming (Dijkstra and
Cheng, 2007b). Alternatively, the more frequent wettingedrying
cycles and more pronounced moisture ranges in the rhizosphere,
compared to the root-free soil, may accelerate C cycling (Lundquist
et al., 1999), which recently was identified as one of the main
mechanisms of rhizosphere priming (Cheng, 2009).

The plant species and its phenological stage controls rhizosphere
SOM priming (Cheng and Kuzyakov, 2005). However, information is
limited on differences among plant species in the amount, compo-
sition and release patterns of root exudates and other root-derived C
products. In early phenological stages and/or during the first half of
the growing season, exudation is expected to be dominant, whereas,
after maturing and/or during autumn and winter, deposition of
root tissues may be increasingly important. One can speculate that
seasonal dynamicsmay bemore pronounced for annual species than
for perennial species. Such dynamicswould only be critical for larger
scale modelling if the underlying species composition varies suffi-
ciently with time and over a larger region to have a significant
influence on the priming effect.

Rhizodeposits may also impact N cycling in other ways as
discussed above. Analysis of the effect of root-derived organic
compounds on the NO3

� reducing- and denitrifying bacterial
communities showed a stimulation of NO3

� reduction and
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denitrification, but had little or no effect on the community
composition (Henry et al., 2008;Mounier et al., 2004). Nevertheless,
some studies have shown plant species to significantly influence
denitrifier community composition (Bremer et al., 2007; Patra et al.,
2005; Ruiz-Rueda et al., 2009), but if this is due to rhizodeposits or
other plant-selective forces is not known. Archaeal amoA transcript
levels and ammonia oxidizing archaea are prevalent at higher levels
than the bacterial counterpart in the rhizosphere (Chen et al., 2008;
Herrmann et al., 2008). This supports the hypothesis that ammonia
oxidizing arcahea can be mixotrophs and/or heterotrophs (Hallam
et al., 2006; Jia and Conrad, 2009; Tourna et al., 2008) and high-
lights the role of archaea in C and N interactions at the population
level.

The following questions need to be addressed to adequately
explain the mechanisms and main controllers driving rhizosphere
effects on SOM cycling and better predict how plant roots affect C
and N cycling at the ecosystem level:

i) Does the microbial community composition affect rhizosphere-
related SOM priming? If so, at what taxonomic or functional
level can that control bebest expressed for predictions?

ii) How does N or P limitation interact with rhizosphere-related
SOM priming?

iii) Are rhizosphere-priming effects similar for soil organic C and
N mineralisation?

iv) How can moisture changes by roots be linked to microbial
SOM priming activity?

v) What are the links between plant species and rhizosphere
effects on SOM decomposition?

vi) How will climate change effect rhizosphere priming?

Quantification and description of root exudates in situ, both
among plant species and across time are crucial for improving basic
understanding of the priming interactions in soil (Phillips et al.,
2008). Studies on SOM priming have distinctly quantified C and N
pool dynamics, often using isotopic tracers (13C, 14C), into separately
existing SOMandplant-derived rhizodeposits (Kuzyakov et al., 2000;
Cheng and Kuzyakov, 2005). We suggest that future research should
focus on clarifying the links between C and N with the use of dual-
isotopic tracers (13C and 15N). Cheng (2009) presented very different
effects of roots on soil C and N mineralisation rates. We posit that
research attempts to link SOM priming flows to ecosystem-level
environmental variables, such as temperature, may be especially
beneficial as Bader andCheng (2007) reportedmuch lowerQ10 values
(i.e. the increase in decomposition rate for 10� increase in tempera-
ture) for soil C cycling within the rhizosphere than in root-free soil.
The effects of roots on soil C cycling are multiple, interactive, and
include both physical and chemical metabolic limitations and trig-
gers. The factors controlling the response of soil microbial commu-
nities need to be better understood to improve understanding of
rhizosphere priming. This requires elucidation of specific enzyme
dynamics, pathways and the interactionswith N, P, and soil moisture
on SOM decomposition. Rhizosphere priming may underlie some
of the changes observed in soil C under simulated climate
change conditions. For example, an increase in root exudates under
elevated CO2 concentrations (Pendall et al., 2004) may accelerate
SOM decomposition, thereby, reducing soil C under future climates.
Furthermore, root litter of plants grown under elevated CO2

concentrations may decompose at a different rate than roots grown
under ambient conditions (van Ginkel et al., 1996; Joffre and Ågren,
2001; Sindhøj et al., 2004). Elevated CO2 concentrations may shift
the rhizosphere to a state of enhanced surplus of C compared to
available N for plants and micro-organisms (Kuzyakov, 2002).
However, climate shifts may influence other major factors regulating
root activity such as soil moisture and availability of other nutrients.

Consequently, we suggest that future research on rhizosphere
priming should address howseveral factors simultaneously affect soil
microbial community response to living roots and thereby consider
the impact of plant species, soil moisture, nutrient status, tempera-
ture, and chemical composition of root deposits and SOM.

2.4. How does black N affect SOM stability?

Charred organic N, here called black N, is an integral part of
charcoal produced from vegetation, litter, and humic material
subjected to fire. Nitrogen tends to be incorporated into molecules
that are heat resistant. Wood, with a lowN content, produces a char
material with an atomic C-to-N ratio ranging from 440 to 630. Char
from humic substances or N-rich vegetation, such as grass species,
has amuch lower ratio ranging from 7 to 14 (Almendros et al., 1990;
Knicker, 2007). Black N might play an important role in the stabi-
lisation of SOM in most fire-affected regions; however, in most
black C models, black N is neglected. Considering the high
frequency of vegetation fires on a global scale, black N could be
equally important as black C for the function of char as a C sink.

Very little is known about the chemical structures and recalci-
trance of black N compounds towards microbial and chemical
degradation. This means that the persistence and turnover rates of
black N in soils cannot be estimated at present. A chemical charac-
terisation of alterations occurring during the formation of black N
has been initiated (Knicker et al., 2008). Peptides and proteins are
the major N-containing molecules in char sources such as vegeta-
tion, litter, and humic material (Knicker, 2004). Knicker et al. (2008)
used the protein casein as a model substance, which was charred
under controlled conditions. Approximately 62% of the initial C
content and 46% of the initial N content remained after exposure to
350 �C for 8 minutes under aerobic conditions. When rye grass
(Lolium perenne L.) was charred under the same conditions, 34% of
the C and N content was recovered. Solid-state 13C NMR (Nuclear
Magnetic Resonance) and 15N NMR revealed that N-containing
pyrogenic structuresmostly consisted of pyrrole/indole-typeN,with
minor contributions from pyridine N and possibly 2.5-diketopiper-
azines as well as pyrroline, and pyrrolidine (Fig. 1; Almendros et al.,
2003; Knicker et al., 2008). Pyrolysis analyses indicate an increase of
imidazole (González-Vila et al., 2001). Such heteroaromatic
compounds are not observed in SOM decomposed by micro-
organisms (Knicker et al., 1993, 1997; Knicker, 2000) and, conse-
quently, these compounds are proposed as possible indicators of
a fire history (Knicker et al., 2005).

The contributions of these heterocyclic chemical structures to the
bulk char can be estimated by using their atomic C-to-N ratios. If C-
to-N ¼ 4, as found in pyrrole, is assumed, such structures could
account formore than 50% of the black C in a grass charwith a C-to-N
ratio of 7.9, if the remainder consists of pure organic C compounds
(Knicker et al., 2008). Alternatively, in a char produced from peat
with a C-to-N ratio of 34 (Almendros et al., 2003), C in heterocyclic N
compounds may have contributed to at least 12% of the total “black
C” pool. Such simple calculations demonstrate that char models,
assuming a graphite-like structure with no N, are strongly over-
simplified. Only one structural concept for charcoal considers the
black N component (Knicker et al., 2008). This concept describes
chars as heterogeneous mixtures of thermally altered macromole-
cules with N and O (and probably S) substitutions as a common
feature. These mixtures include remains of the lignin backbone and
a significant contribution of pyrolysis products, such as furans and
anhydrosugars from cellulose, and heteroaromatic N from peptides
(Knicker, 2007). This concept suggests a lower biological and
chemical stability of pyrogenic organic matter (PyOM) compared to
the assumptions usually made in black C models. The proposed
chemical composition is consistent with an observed and
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unexpectedly high biodegradability of naturally occurring chars
(Bird et al., 1999). However, most approaches to quantify black C are
based on polyaromatic structures, which resist both thermal and
chemical oxidation (Masiello, 2004). Therefore, new concepts could
provide a much clearer picture of the analytical variability of black C
obtained from the same reference materials, depending on the
method used (Currie et al., 2002). New approaches are needed that
consider the high heterogeneity and the presence of oxidizable
functional groups in order to obtain a correct quantification of char
in soils.

Although PyOM may not be as recalcitrant as assumed, N in
a heterocyclic formshould still be less accessible formicro-organisms
than N in other chemical structures (Schnitzer and Spiteller, 1986).
The incorporation of blackN into SOMcould have a long-term impact
on soil biochemistry and N and C cycles. The assumption of a high
biological stability of black N is supported by the identification of
heterocyclic N in various fire-affected soils. In Neolithic paddy fields,
almost all organic N occurred in N-heterocyclic species (Maie et al.,
2006; Knicker, 2007). Although burning may increase the concen-
tration of organic N in soils, the long-term N availability for plant
production was found to decrease in some Australian soils (Knicker
and Skjemstad, 2000), resulting in a lower litter production and,
consequently, a decline of the input of fresh soil organic matter. Data
collected so far highlight that black N needs further attention to
obtain a better understanding of SOM stabilisation and the rela-
tionship between organic N and C sequestration.

Black N should be considered as an integral part of the char
produced from vegetation, litter, and humic material during fires.
The relatively high N content of the char indicates that black N is an
important factor determining the chemistry and stability of black C.
Thus, the properties of black N should be considered in models
attempting to simulate C cycling in soils on the global scale.
Whereas, black C is considered as a factor for increasing C seques-
tration, the N moiety may some extent have an opposite effect.
Black N mainly consists of immobilised N that could serve as an N
source stimulating new primary production. Conversely, the
formation of heterocyclic black Nmay have an inhibitory effect on N
mineralisation and primary production, and on the eventual
formation of new litter material necessary for replacing losses of
soil organic matter. N limitation introduced by N immobilisation

may even support an acceleration of SOMdecrease. Therefore, black
N introduction to soil may contribute to a decline in C sequestration.
On the other hand, the so-called “liming” effect (formation of
alkaline plant ash during burning) and the function of newly formed
unstable char as a fertiliser may to some extent compensate for
these effects, at least after a fire of low intensity (Knicker, 2007).

From this short discussion it should be clear that a much deeper
understanding of the black C and black N chemistry is necessary if
the aim is to deliver reliable model predictions of C and N cycling in
fire-affected soils. There are, however, some important technical
obstacles to overcome, including a better understanding of the
full range of structures forming black N and new methods for
quantifying N compounds. Consequently, knowledge of the global
abundance of black N is limited, and quantification of the impor-
tance of black N for SOM stabilisation on the global scale is in its
infancy. The roles of fire frequency and intensity require a better
understanding, particularly as the frequency of fires is expected to
increase as the future climate unfolds.

2.5. How could different fractions of SOM be adequately
represented in models at various scales?

The heterogeneity of SOMwith respect to its stability is a central
challenge in developing mechanistic and predictive models of SOM
dynamics. SOM can rarely be satisfactorily represented as a single
uniform entity. This was apparent already in the earliest mathe-
matical modelling of SOM (Jenny et al., 1949). Hence, virtually all
current models represent SOM heterogeneity as either: i) two or
more ‘pools’ or fractions of SOM differing in their specific decay
rates (and at least in some of their rate controlling factors) (Andrén
and Kätterer, 1997; Coleman and Jenkinson, 1996; Parton et al.,
1987) or ii) a continuous ‘quality’ spectrum, where the specific
decay rate is a continuous function of the quality (Bosatta and
Ågren, 1985; Ågren and Bosatta, 1998). The models explicitly
represent SOM heterogeneity, but the question that arises is how
these conceptualisations correspond to observable soil properties.

Some of the earliest multi-pool models (Jenkinson and Rayner,
1977; Van Veen And Paul, 1981; McGill et al., 1981) define SOM
pools according to a classical chemical fractionation method for
characterising SOM. However, these methods generally fail in

Fig. 1. Chemical structure of some black N compounds expected to be formed during charring of peptides and proteins.
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isolating kinetically meaningful fractions that can be generalised
across a range of different soils and SOM contents (Stevenson and
Elliott, 1989; Bruun et al., 2010). Consequently, many of the SOM
pools represented inmodels are operationallydefinedas ‘conceptual’
fractions that do not directly correspond to a specific measurable
quantity of SOM. Explicitly defined, measurable pools would be
advantageous, as initial conditions, i.e., the quantities of SOM across
all pools (or a quality density distribution) could then be determined
independently from direct measurements, negating the need for
calibrations or model spin-up procedures for establishing the
distribution of SOM between different fractions. This distribution is
sensitive to land use history and previous management, which is
often unknown and a major concern when applying models over
large spatial scales. The existence of an extremely slowly reacting
pool, of a so-called “inert” C pool such as black C, adds an additional
dimension.

Most SOM models imply a catenary sequence of decomposition
(sensu Swift et al., 1979), in which decomposition residues become
progressively more recalcitrant. This pattern reflects old concepts
of humification in which secondary decomposition products are
assumed to successively form new complex molecules that are
increasingly more difficult to decompose. However, increasing
evidence suggests that so-called humic materials are mixtures of
primary plant and microbial-derived molecules and metabolites
rather than novel complex “humic substances” (Kelleher and
Simpson, 2006; Sutton and Sposito, 2005; von Lützow et al., 2008).

Many SOM models have increasingly changed towards physi-
cally based OM fractions and greater consideration of organic
matteremineral interactions (see von Lützow et al., 2008 for an
excellent discussion). Particulate organic matter (or light) fractions,
representing relatively labile, partially decomposed plant frag-
ments are explicitly included in some models (Sohi et al., 2005).
However, most models include the effects of soil physical protec-
tion and mineral interactions in a simplistic manner, often as
a function of soil texture (Paustian, 1994; Falloon and Smith, 2000).

A predominately physical basis (excluding processes involved in
black C formation) for SOM stabilisation implies the potential for
a finite space (e.g. mineral surface area) limitation e a saturation
limit for SOM stabilisation (Hassink and Whitmore, 1997). Six et al.
(2002) proposed a more general conceptual model of saturation
and physical protection of SOM. This includes aggregated-protected
organic matter and SOM protected on mineral surfaces, both of
which could be subject to saturation of their protection capacities.
A key implication of saturation is a departure from assuming first-
order kinetics, which is the basis for nearly all ecosystem-level
models of SOM dynamics (Paustian et al., 1997a). With saturation,
the relative stabilisation efficiency of added organic matter
decreases as a function of SOM content, whereas, under first-order
kinetics, relative stabilisation efficiency is constant.

The dynamics of SOM with projected changes in CO2, climate,
land use, and management at the global scale is a major focus of
current research. Of particular importance are questions about
the potential feedback on SOM from changes in productivity, plant
communities, and altered temperature and moisture regimes.
Models directly coupling climate processes and C cycle processes
address these questions. Many global C cycle models and coupled
climateecarbon cycle models use model structures derived from
existing ecosystem-level soil C models, although the level of detail
varies considerably (Friedlingstein et al., 2006; Sitch et al., 2008).
In an analysis of 11 coupled climateecarbon cycle models
(Friedlingstein et al., 2006), the representation of soil and litter C
stocks varied from a single pool for all SOM to as many as nine
separate SOM and litter pools. All models used a discrete pool
structure with decomposition based on first-order kinetics and
included temperature and moisture limitations on decomposition

rates. For temperature,mostmodels assumed aQ10 type relationship
(in most cases Q10 ¼ 2), although one model assumed separate
temperature response functions for pools with different mean resi-
dence time (MRT), such that the Q10 value decreasedwith increasing
MRT. For climate feedback on C cycle processes, decomposition
varied strongly, ranging from minimal response to a strong positive
feedback, in which average SOMmean residence time decreased by
one year for each 1 �C increase in global mean temperature
(Friedlingstein et al., 2006).

A particular challenge for scientists is determiningwhen explicit
consideration of a microbial mechanism is needed to predict
ecosystem-level cycles (Ågren, 2010). Rhizosphere effects on
ecosystem C fluxes are important, but what information is needed
about microbial community dynamics for predicting the direction
(positive or negative) and the degree of SOM priming from living
roots? Most ecosystem-level models rely on first-order kinetics to
describe microbial mediated decomposition of SOM pools, despite
microbial dynamics being better expressed with Monod kinetics.
Improvements of SOM models should include explicitly microbi-
ology, focus on community-level microbial dynamics and/or
production of exoenzymes (Schimel and Weintraub, 2003; Allison
et al., 2010). The prediction of rhizosphere-induced SOM priming
events may require the understanding and consideration of both
microbial substrate utilisation patterns and maintenance assump-
tions (Cheng, 2009). An effective microbial sub-model predicting
priming effects has been constructed for use with SOM models
(Neill and Gignoux, 2006). This model includes multiple microbial
populations and substrate types (soluble and insoluble) and
thresholds that alter both microbial growth (through substrate
limitation) and the decay rates of SOM pools. Ultimately,
ecosystem-scale SOM models may need to consider the activity of
multiple microbial populations, substrates, and nutrient resources
in order to express the complex interactions associated with
rhizosphere-related SOM priming (McGill, 1996). Advances in
microbial genomics may provide an effective approach to linking
microbial community dynamics and activity in soil C cycling, and
ultimately assess the functional capacity of soil microbial commu-
nities. Both 13C stable isotope probing (SIP) and RNA/DNA func-
tional arrays are potentially useful for explaining the roles of
specific microbial groups important for the degradation of SOM in
soils (Gentry et al., 2006; el Haichar et al., 2007).

There is an increasing awareness that the interactions of soil C
and N need to be taken into account for modelling the impact of
climate changes on N-limited ecosystems (Thornton et al., 2007).
Some models directly describe the coupling between soil C and
N, such as SOILN (Johnsson et al., 1987), CoupModel (Jansson
and Karlberg, 2004), DNDC (Li et al. 2000), ROMUL (Chertov,
1990), CENTURY (Parton et al., 1987), Rothamsted Nitrogen Model
(Bradbury et al., 1993), and Daisy (Bruun et al., 2003). Several
models were originally developed for agricultural ecosystems,
where plant available N is relatively high. The need to include
a description of the plant uptake of organic N in symbiosis with
mycorrhiza became apparent when these models were applied to
N-limited ecosystems such as boreal forests (Eckersten and Beier,
1998; Gärdenäs et al. 2003; Svensson et al., 2008). However, the
descriptions of the utilisation of organic N are incomplete and
important knowledge gaps are that the accompanying energy costs
and emissions of CO2 are largely unknown.

Many existing SOM models focus on organic matter trans-
formations in the near surface layers (e.g. top 20e30 cm) of soil.
Modelling the full depth distribution and dynamics of SOM is still at
a relatively early stage (Elzein and Balesdent, 1995; Jenkinson and
Coleman, 2008). There is much less field data on SOM changes
below the topsoil, as the majority of measurements in long-term
trials and chrono-sequences are restricted to the plough layer.
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Understanding of the processes of vertical movement, mobilisation
and deposition of SOM within different soils e including root
distributions and turnover, transport of Dissolved Organic Matter
(DOM) and more diffuse movements of SOM to depth is scanty. SOM
decomposition at depth is substantially different from SOM decom-
position in surface soils (Rey et al., 2008). For example, a major
mechanism is the rhizosphere priming of older SOM in the subsoil by
fresh organic matter (Fontaine et al., 2007), with more spatial and
temporal variation in the process than occurs in surface soils.

Several gaps in our understanding indicate important areas of
continuing and new research for modelling soil C and N dynamics:

i) The interactions between soil C and N, especially of the
utilisation of various sources of plant available N such as
organic N, N made available by priming and black N.

ii) The interactions between secondary soil minerals and organic
matter, accounting for stabilisation mechanisms involving
clay and oxide surfaces as well as physical protection of
organic matter within soil aggregates.

iii) The vertical variation in SOM and its decomposition rates in
the whole profile,

iv) The stabilisation of black C and black N on SOM dynamics.
v) The interaction between soil C and N should go beyond fixed

C-to-N ratios in different pools.

3. Comparison of knowledge levels and importance
for soileclimate interactions

3.1. Comparison of knowledge level

A qualitative comparison of the current knowledge level of the
five topics in relation to scale based on the preceding sections is

given in Fig. 2a. For example, at the molecular scale, there is an
excellent understanding of the chemical composition of the
greenhouse gases emitted from the soil, whereas our under-
standing of black N compounds and their behaviour is rather poor.
There is currently not even a standard method for determining
black N content (Currie et al., 2002) and the lack of such amethod is
an obstacle for comparing the quantities of black N in different
ecosystems, and rendering it difficult, if not impossible, to deter-
mine the importance of black N for soileclimate interactions at
different scales. Consequently, the knowledge level of black N and
its behaviour decline even more with increasing scale.

For greenhouse gas emissions, understanding at the
ecosystem scale is intermediate. We have a fairly good qualitative
understanding of which types of ecosystems that emit which
greenhouse gases. Waterlogged ecosystems such as rice paddies
in tropical and sub-tropical areas, and melting permafrost on the
arctic tundra, emit large quantities of CH4. Many agricultural
systems, drained peat soils and humid tropical soils emit N2O
(Davidson, 2009) and boreal forest soils are a potentially large
source of CO2 (Raich and Schlesinger, 1992). Yet, we cannot
quantify how these fluxes are affected by changes in climate, land
use or management. Contradictory results have been presented,
some of which are difficult to interpret. Among these are the
regulation of CH4 emissions by N fertilisation (Noll et al., 2008)
and the huge coefficients of variation found for various soil C and
N processes (i.e. 100e800%, Zak et al., 2000). Very little progress
has been made in gas chamber methods despite that the
systematic differences between static and dynamic chamber
methods have been known for decades (Witkamp, 1969; Moore
and Roulet, 1991). Thus, ‘we don’t know what we know’ about
greenhouse gas emissions at the ecosystem scale.

The knowledge level for uptake of organic N by plants is
considered higher than that of priming by roots at both the molec-
ular and the organism scale. The identification of the major trans-
porters of organic N in the model plant A. thaliana is an important
break-through for understanding uptake of organic N (Hirner et al.,
2006; Svennerstam et al., 2008). Examples of the conceptualisa-
tion of plant uptake of organic N are found in the literature (Schimel
and Bennett, 2004) and in some mathematical ecosystem models
such as SOILN and CoupModel (Eckersten and Beier, 1998; Gärdenäs
et al. 2003; Svensson et al., 2008). Despite these advances, quanti-
fication of the process is still hampered by i) the low stability of
organic N compounds, ii) a lower diffusion rate of organic N
compared to that of mineral N, and iii) inability to distinguish
between uptake of organic N taken up by symbiotic from that by
non-symbiotic micro-organisms.

In order to improve the basic understanding of the priming
interactions in soil there is a need to quantify the variability of root
exudates in situ among species and across time (Phillips et al.,
2008). At the organism scale, the effects of N on the activity of
those microbial groups being responsible for soil-priming events
merit further investigation (Bird et al., 2011). Priming effects are
highly variable across ecosystems (the literature cites examples
ranging from �50% to more than þ380%). We recommend that
research efforts should focus on identifying the mechanisms
responsible for such variability and unpredictability, since rhizo-
sphere-priming effects may be large enough to influence C balances
at both the ecosystem and the global scale. We are still unable to
predict both the direction and degree of the effects despite the
compelling concepts developed by Kuzyakov (2002). The knowl-
edge gaps in priming and organic N uptake are substantially larger
than those in greenhouse gas emissions from ecosystems. In terms
of ecosystems and global scale, ‘we know what we don’t know’.
Future research addressing these processes will require the use of
dual-isotopic tracers (13C and 15N).

molecular
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Fig. 2. (a) Knowledge level of the five topics at the different scales. (b) Estimated
importance of the five topics at the different scales.
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Unlike process-related topics, modelling is most advanced at the
ecosystem scale. Manzoni and Porporato (2009) conducted an
in-depth comparison of 250 biogeochemical models across different
scales, with respect to their theory and mathematical structure.
Models at the ecosystem scale were highest in number and had the
highestmedian of phase-space dimension (PSD), which is ameasure
of model complexity in relation to scale. Manzoni and Porporato
(2009) expressed concern that models developed for a certain
scale are often used at other spatial and temporal scales and this
might result in a bias between model formulation and application.
Although the understanding at the ecosystem scale is good, under-
standing at the global scale is intermediate. At the global scale,
Manzoni and Porporato (2009) found the lowest median PSD. Delire
et al. (2003) evaluated how well the biosphereeatmosphere model
CCM3-IBIS could simulate the present climate and global C cycle.
The simulated climate did not reflect the African monsoon, which
strongly affected the simulation of the local vegetation. The pre-
dicted increase in CO2 concentration at the end of the 21th century
varied from 20 to 200 ppm, with a median increase between 50 and
100 ppm in a comparison of 11 global climateecarbon cycle models
(Friedlingstein et al., 2006). This reflects the need for improvement
in knowledge levels andwe suggest that by taking into account some
of the major soil C and N interactions could lead to a considerable
improvement in modelling climate change.

3.2. Importance for soileclimate interactions

Our third objective with this study was to rank the importance of
each topic for soileclimate interactions (Fig. 2b).Weused two criteria
for ranking: i) direct influence on soileclimate interactions and ii)
indirect influence on soileclimate interactions through plant avail-
able N and, thereby net ecosystem productivity (NEP). The direct
effects of the greenhouse gases, CO2, CH4, and N2O, on climate are
known. CH4 is known to have a 25 times stronger greenhouse gas
forcing effect than CO2 and N2O has a 298 times stronger effect than
CO2 within a 100 years time frame. This high level of importance of
the greenhouse gases at the molecular scale impinges on the other
scales. The management of agricultural and forest ecosystems
strongly influences global fluxes of greenhouse gases, with drainage
and N fertilisation affecting whether C is emitted as CO2 or CH4 from
wetlands. The net global rates of photosynthesis and respiration
(both approximately 200 Pg year�1; Schlesinger, 1997) have been
relatively stable since the last glaciation, but they are currently being
disrupted by anthropogenic CO2 addition from fossil fuel combustion
and land use change. Anthropogenic CO2 emissions corresponds
roughly to 10% of the annual global soil respiration and far-reaching
consequences can be expected if global soil respiration is enhanced
by climate change, and not balanced by a corresponding increase in
photosynthesis. Variations in the concentration of global atmo-
spheric CH4 are attributed to climatically induced shifts in global
distribution and activity of wetlands, which are the main natural
sources. Similarly, variations in the atmospheric N2O burden are
considered as dominated by the production process, with two-thirds
of the total N2O sources coming from terrestrial ecosystems, and
approximately one-third arising in the oceans since the last glacia-
tions. At the heart of these globally significant changes lay the
responses of soils.

The second criterion for ranking an identified knowledge gap is
the importance of the process for plant available N or our under-
standing and capability to model plant available N. This criterion
was included as several studies (e.g. Cramer et al., 2001; Thornton
et al., 2007) have highlighted that the estimated change in NEP
with climate change is much lower when plant available N is taken
into account. In the comparison of 6 models by Cramer et al. (2001),
the two models which included interactions between C and N

cycles (Hybrid and SDGVM) showed only a small increase in NEP.
The response of NEP to plant available N under climate change
conditions is an essential soileclimate interaction. A lower
response of NEP with climate change means a faster rate of climate
change and implies that the global C sinks can be overestimated
(Thornton et al., 2007).

Total plant available N is an example of a C and N interaction
which requires further attention. The concept of N availability has
widened from an emphasis on mineral N to include the formation
and uptake of smallmolecular organicN compounds aswell (Schimel
and Bennett, 2004; Näsholm et al., 2009). Schimel and Bennett
(2004) concluded that availability of N to plants and micro-organ-
isms is primarily determined by i) de-polymerisation of N-containing
organic molecules, ii) uptake of amino acids, small peptides and
amino sugars by plant roots andmicro-organisms (cf. Näsholm et al.,
2009) and iii) N mineralisation/immobilisation, nitrification and
root uptake of inorganic N. During recent years, there has been an
increased insight that N availability is influenced by interactions
between root exudates, root litter and rhizosphere micro-organisms
(Herman et al., 2006; Dijkstra et al., 2009; Philippot et al., 2009).
Therefore, appropriate investigations of potential plant available N in
soil requires the use of plantesoilmicrocosms rather than the routine
incubation tests of soil samples (Frank and Groffman, 2009).

Rhizosphere priming and uptake of organic Nmight be especially
important in times of N shortage, as these processes imply
a considerable energy demand on plants, but these costs must be
seen in relation to costs for uptake of NO3

� or NH4
þ. In barley, NO3

�

nutrition increased C costs for N nutrition by more than 60%
compared to ammonium (Bloom et al., 1992). However, in many
plants, NO3

� reduction and assimilation takes place in the shoot,
where energy, otherwisewasted, can be used (Andrews,1986). The C
costs of assimilating organic N are different from those formineral N
because organic C sources are absorbed together with N and at least
for amino acids, metabolism is probably mainly through trans-
amination reactions, which do not require energy input, in contrast
toNO3

� andNH4
þ assimilation. On the other hand, the diffusion rate of

NO3
� ions in the soil is at least 1 order of magnitude higher than that

of NH4
þ ions, and 1e2 orders of magnitude higher than that of

most organic N compounds. The C costs for organic N uptake might
increase due to the low diffusion rates, because a considerable
higher root or mycorrhizal area is needed to sustain a given rate of N
absorption through uptake of organic N than that of NO3

� ions and
probably also that of NH4

þ ions. The differences in energetic costs for
the different N sources remain an unresolved question.

3.3. Impact of climate change on plant available N

A key question is how climate changewill affect plant available N
in different ecosystems and globally. Soil processes and interactions
might fundamentally change with the future climate and create
a different response to that revealed from the historical record. Such
changes are not likely to be captured in a GCMwith a simple implicit
representation of soil processes. Moreover, other drivers of these
processes such as N deposition may change simultaneously. For
example, we can expect that the abundance of black N will increase
with climate change in the current (semi-) arid areas due to an
increased frequency and intensity of fires (Jones et al., 2009). Black N
is assumed to reduce N availability to plants and microbes by its
stabilising impact on SOM (Schnitzer and Spiteller, 1986).

The positive effect of elevated temperature on C and N minerali-
sation and emissions of greenhouse gases is well-known (Lloyd and
Taylor, 1994). Studies on temperature effects are conducted since
the early 1900s, when Arrhenius and van t’ Hoff discussed temper-
ature dependency of chemical reactions. Variations in temperature
sensitivity of SOM and the interaction with N dynamics in soils
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influence both heterotrophic respiration and NEP. Therefore, the net
flux of CO2 between the biosphere and atmosphere will inevitably
change under future climate change. Capturing this feedback is likely
to be critical for accurate GCM predictions of future climatic
conditions.

Zak et al. (2000) presented an excellent review of impacts of
elevated CO2 on microbes and microbial processes, recognising the
impact of elevated CO2 on N mineralisation as one of the major
knowledge gaps. The coefficient of variation in gross N minerali-
sation of the 10 experiments includedwas as high as 800%, and that
of the impact on net Nmineralisationwas almost 300%. In this case,
‘we knowwhat we don’t know’. Zak et al. (2000) suggested that the
key to unravelling this knowledge gap lies in the longevity and
biochemistry of fine-roots, that is, in rhizosphere priming.

N losses such as N2O emissions and N leaching from ecosystems
in current cold-temperature regions might be further enhanced due
to intensified freezingethawing cycles (Goodroad et al., 1984;
Dörsch and Bakken, 2004; Schimel and Clein, 1996; Joseph and
Henry, 2008). Moreover, climate change will cause a shift in
natural vegetation and in our selection of agricultural cropswhich, in
turn, will lead to changes in litter quantity and quality and altered
root-to-shoot ratios. Weintraub and Schimel (2005) observed a shift
to more woody shrubs in arctic tundra ecosystems, which, among
other things, means more litter with a high C-to-N ratio. Soil CO2
emissions are related to both plant species composition and the
amount of below-groundproductivity (Craine et al., 2001). The effect
of elevated atmospheric CO2 concentrations onNEP is expected to be
more pronounced than temperature, due to an increased water-use
efficiency (Tyree and Alexander, 1993; Hungate et al., 2002) as well
as an increased N-use efficiency (van Oijen et al., 2008).

The expected intensification of thehydrological cyclewith climate
change (Meehl et al., 2007) could potentially lower the amount of
plant available N. For instance, in sub-tropical regions, lower N
availabilitydue to reducedmineralisationasa foldof intensifiedwater
stress, and sometimes evendesertification, is to beexpected,whereas
inareaswithahigher rainfall,N losseswill increasedue toenhancedN
leaching (Kundzewicz et al., 2007; Eckersten et al., 2001). This latter
effect could be somewhatmoderated bya less dramatic snow-melt in
boreal forest ecosystems, which is one of the important events for N
leaching, especially in fertilised forests (Gärdenäs et al., 2003).

There have been only a limited number of multi-factor climate
change experiments (Dukes et al., 2005; Craine et al., 2001; Edwards
and Norby, 1998; Niinistö et al., 2004; Slaney et al., 2007), most of
them presenting non-significant impacts, particularly when incor-
porating all the three major changing drivers, i.e. temperature,
precipitation and CO2 concentration (Luo et al., 2008). A number of
critical questions arise from this; Firstly, can our understanding
improve by comparingmodelling results with non-significant results
of experiments? Secondly, why do several factors so frequently
cancel out each other, meaning the overall impact of climate change
on the C balance is not as large as concluded from the results of single
factor studies? Perhapswe are totallymissing one ormore important
feedback mechanism, or to speak with Bouma ‘We don’t know yet
what we don’t know’. The challenge is to narrow these knowledge
gaps.We identified one of the largest discrepancies between the level
of knowledge and level of importance to be modelling at the global
scale (Fig. 2a and b). We see here a huge potential for improvement,
which is considered more in the next section.

4. C and N dynamics at the global scale and their
representation in GCMs

Models are often limited to the number of spatio-temporal
scales that are of direct interest for predictive capability, and
therefore, do not explicitly represent processes and drivers at finer

scales. Processes at larger or finer scales are represented either as
a variable input to the model and/or crudely represented in the
model algorithms or parameterisation. In turn, this creates uncer-
tainty in the predictions due to errors in the input data or imper-
fections in the model structure. For example, if the influence of
priming at the pedon scale varies linearly with climate, then it is
probably not necessary to explicitly represent the processes
occurring at the pedon scale. However, this may not be the case,
and the underlying response may be due to interactions that can be
explained by the processes at the finer scale. In turn, the larger scale
model would need an appropriate input to capture these dynamics
or explicitly represent the processes.

GCMs are coupledwith ocean and terrestrial Cmodels to simulate
climate dynamics at a one-degree or larger gridded global resolution
(Friedlingstein et al., 2006). The underlying heterogeneity occurring
within the grid cells is often ignored under the assumption that its
influencewill not change the resulting exchange of CO2 or the climate
change trajectory. Many coupled GCM climateecarbon cycle models
employ model structures derived from existing ecosystem-level soil
C models (Friedlingstein et al., 2006; Sitch et al., 2008). However,
many finer scale interactions between C and N in soils are not
explicitly represented, or are crudely captured, as the spatial reso-
lution is too large for distinguishing the underlying heterogeneity of
for example soil texture or depth, topography, or microbial commu-
nity structure. Where responses of SOM to such factors are non-
linear, the use of estimates from spatially averaged values as model
inputs can lead to large aggregation errors (Paustian et al., 1997b).

For improving estimates of climate change impacts on C cycling
at global scales, the question of temperature sensitivity as a func-
tion of SOM recalcitrance is important, as highlighted in the model
comparison made by Friedlingstein et al. (2006). Although there is
no consensus among modellers (Giardina and Ryan, 2000; Ågren
and Bosatta, 2002; Knorr et al., 2005; Reichstein et al., 2005;
Davidson and Janssens, 2006), empirical evidence supports the
hypothesis that recalcitrant SOM has a higher temperature sensi-
tivity (Conant et al., 2008; Hartley and Ineson, 2008). Indeed the
question of temperature sensitivity of SOM recalcitrance is pivotal
for research on the impact of climate change, but we would like to
reformulate the question: Which roles do different N compounds
play in SOM recalcitrance and what consequences have SOM
recalcitrance for plant N availability?

Nested models or sub-spatial gridding could be used to incorpo-
rate someof thefiner scaleSOMcontrols, even inglobal-scalemodels.
A useful first step is to conduct sensitivity testing to examine the
effectsof scaleon thepredictedsoil CandN interactions. Forexample,
to examine how much the finer scale soil processes would need to
change before they significantly influenced the CO2, N2O, or CH4
fluxes, as currently represented in the coupled GCM. A second
approach is todevelopempirical relationshipsbetweentheprocesses
and the underlying heterogeneity of the variable in question. This
second approach would produce reasonable results if empirical data
are collected from laboratory experiments, microcosm studies, or
field experiments that adequately represent the future conditions.
A third approach is to use nestedmodels with a sub-spatial gridding
of the coarser GCM grid. A sub-sample of the grid cells could
be simulated that incorporates the influence of finer scale variables
on plant production, litter, and SOM dynamics. The results could be
used as an input to the coupled GCMs, after scaling the results to the
coarser GCM grid. Uncertainty in predictions could be addressed by
accounting for uncertainty with the variance of the responses,
assuming the sub-sample of grid cells is selected at random.

These approaches require considerable effort, particularly the
third approach. Soil and ecosystem models can be used to drive
the processes and interactions, including representation of the
heterogeneity of variables at scales finer than the GCM grids.
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The question remains to what extent inclusion of soil processes at
this level would elicit responses large enough to warrant inclusion
in the coarser models.

5. Conclusions

The knowledge levels for different processes-related topics
decline with increasing scale, while the knowledge level for
simulation models is highest at the ecosystem scale. The largest
discrepancy between knowledge level and importance appears at
the scale of global modelling. We conclude that a reliable quanti-
fication of greenhouse gas emissions at the ecosystem scale is of
paramount importance for improving soileclimate representation
in GCMs. Key questions in climate change research are to identify
the role of different N species for temperature sensitivity of SOM
recalcitrance and what consequences SOM recalcitrance may have
for plant N availability. The importance of priming and plant uptake
of various N species at the ecosystem scale, including how these
processes are affected by climate change, land use, management
and N deposition needs to be quantified. An ability to quantify these
processes would enable selection of which soil N processes need to
be included into GCMs. Multi-method approaches, such as the use
of dual-isotopes are developing tools necessary to narrow the
existing knowledge gaps in soil C and N interactions.
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